Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting.
نویسندگان
چکیده
We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and a solid substrate mainly caused this discrepancy. We combine the domain perturbation method with the Lindsted-Poincaré method to derive an asymptotic formula for resonant frequency. Theoretical analysis shows that the resonant frequency is a function of the time-averaged contact angle. Each mode of the resonance frequency is a linear function of ɛ(1), which is the magnitude of the cosine of the time-averaged contact angle. The most dominant mode in this study, that is, the fundamental mode n=2, decreases linearly with ɛ(1). The results of the theoretical model are compared with those of both the experiments and numerical simulations. The average resonant frequency deviation between the perturbation solutions and numerical simulations is 4.3%, whereas that between the perturbation solutions and the experiments is 1.8%.
منابع مشابه
Shape Oscillation and Internal Mixing in Sessile Liquid Drops Using Electrowetting-on-Dielectric (EWOD)
Internal mixing within a sessile liquid drop can be significantly enhanced by means of so-called electrowetting-on-dielectric (EWOD), using an alternating electric potential. This is done experimentally by monitoring the coalescence and mixing of dyed liquid drops that are brought together by electrowetting actuation. The process is monitored using high-speed imaging and the extent of mixing wi...
متن کاملWettability Study of Super-Hydrophobic Silica Aerogel Powders
Due to the importance of super-hydrophobic silica aerogel powder as a material in the field of energy saving, its wettability in the presence of various surfactants was investigated. One anionic and two non-ionic surfactants with different molecular structures were used as wetting and dispersing agents. Wetting properties of the aerogel powders were investigated by the contact angle measure...
متن کاملShaken not stirred –On internal flow patterns in oscillating sessile drops
We use numerical (volume of fluid) simulations to study the flow in an oscillating sessile drop immersed in an ambient immiscible fluid. The drop is excited by a sinusoidal variation of the contact angle at variable frequency. We identify the eigenfrequencies and eigenmodes of the drops and analyze the internal flow fields by following the trajectories of tracer particles. The flow fields displ...
متن کاملElectrowetting-induced oil film entrapment and instability.
We investigate the spreading at variable rate of a water drop on a smooth hydrophobic substrate in an ambient oil bath driven by electrowetting. We find that a thin film of oil is entrapped under the drop. Its thickness is described by an extension of the Landau-Levich law of dip coating that includes the electrostatic pressure contribution. Once trapped, the thin film becomes unstable under th...
متن کاملFluid Flow and Mixing within Drops in Ac Electrowetting
Electrowetting generates flow patterns inside drops when AC voltages are employed. For AC frequencies around the drop eigenfrequency (typically O(1kHz) or less), capillary waves emanate from the contact line giving rise to a net motion in the bulk of the drop. This flow can be described by a capillary wave-driven Stokes drift. At higher AC frequencies (above 10kHz, depending on liquid conductiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2014